Saturday, June 1, 2013

LOSSES IN TRANSMISSION LINES

Copper Losses
One type of copper loss is I2R LOSS. In rf lines the resistance of the conductors is never equal to zero. Whenever current flows through one of these conductors, some energy is dissipated in the form of heat. This heat loss is a POWER LOSS. With copper braid, which has a resistance higher than solid tubing, this power loss is higher.
Another type of copper loss is due to SKIN EFFECT. When dc flows through a conductor, the movement of electrons through the conductor's cross section is uniform. The situation is somewhat different when ac is applied. The expanding and collapsing fields about each electron encircle other electrons. This phenomenon, called SELF INDUCTION, retards the movement of the encircled electrons. The flux density at the center is so great that electron movement at this point is reduced. As frequency is increased, the opposition to the flow of current in the center of the wire increases. Current in the center of the wire becomes smaller and most of the electron flow is on the wire surface. When the frequency applied is 100 megahertz or higher, the electron movement in the center is so small that the center of the wire could be removed without any noticeable effect on current. You should be able to see that the effective cross-sectional area decreases as the frequency increases. Since resistance is inversely proportional to the cross-sectional area, the resistance will increase as the frequency is increased. Also, since power loss increases as resistance increases, power losses increase with an increase in frequency because of skin effect.
Copper losses can be minimized and conductivity increased in an rf line by plating the line with silver. Since silver is a better conductor than copper, most of the current will flow through the silver layer. The tubing then serves primarily as a mechanical support.


Dielectric Losses
DIELECTRIC LOSSES result from the heating effect on the dielectric material between the conductors. Power from the source is used in heating the dielectric. The heat produced is dissipated into the surrounding medium. When there is no potential difference between two conductors, the atoms in the dielectric material between them are normal and the orbits of the electrons are circular. When there is a potential difference between two conductors, the orbits of the electrons change. The excessive negative charge on one conductor repels electrons on the dielectric toward the positive conductor and thus distorts the orbits of the electrons. A change in the path of electrons requires more energy, introducing a power loss.
The atomic structure of rubber is more difficult to distort than the structure of some other dielectric materials. The atoms of materials, such as polyethylene, distort easily. Therefore, polyethylene is often used as a dielectric because less power is consumed when its electron orbits are distorted.


Radiation and Induction Losses
RADIATION and INDUCTION LOSSES are similar in that both are caused by the fields surrounding the conductors. Induction losses occur when the electromagnetic field about a conductor cuts through any nearby metallic object and a current is induced in that object. As a result, power is dissipated in the object and is lost.
Radiation losses occur because some magnetic lines of force about a conductor do not return to the conductor when the cycle alternates. These lines of force are projected into space as radiation and this results in power losses. That is, power is supplied by the source, but is not available to the load.

SPECIFYING OR DESIGNING RADIATED MEASUREMENT SYSTEMS

When specifying or designing any measurement receiver system, one should consider that the "system" will include other devices such as antennas, amplifiers, cabling, and possibly filters.Because a receiver's selectivity, the ability to select frequencies or frequency bands, is primarily a function of the receiver's tuner design, and will be chiefly dependent on the individual receiver selection, selectivity will not be specifically addressed in this text. Receiver system
sensitivity, however, presents one of the greatest difficulties, or
challenges, when designing or specifying receiver measurement systems. Therefore, the sensitivity of the two basic types of receiver systems,
one with a pre-amplifier and one without a pre-amplifier, will be addressed in some detail.

Because antennas are not perfect devices and have associated "losses," the following examples will include explanations for these error corrections. As mentioned previously, amplifiers will not only amplify the emissions being measured but they will  also amplify ambient electromagnetic noise. These ambient conditions can drastically change the overall sensitivity of a measurement system. Another potential problem associated with using amplifiers is that they also generate internal electromagnetic noise. Being active devices they will introduce their own internal electromagnetic noise into the receiver system, again having an influence on the total system's noise level, thus, its sensitivity. Some corrections for the above mentioned problems are necessary to accurately calculate both the receiver's signal input sensitivity and (more importantly) the total system's ambient
sensitivity. Without knowing the total measurement system's ambient sensitivity, measurements may not be possible down to anticipated emission levels. In electromagnetic measurement systems terms such as ambient sensitivity, system sensitivity, and receiver sensitivity have been used interchangeably.

More confusing expressions commonly used are terms such as "receiver noise floor," or "system noise floor."

THE RECEIVER AND AMPLIFIER

A receiver is an electro-mechanical device that receives electromagnetic energy captured by the antenna and then processes (extracts) the information, or data, contained in the "signal." The basic function of all receivers is the same regardless of their specific design intentions, broadcast radio receivers receive and reproduce commercial broadcast programming, and likewise, TV receivers detect and reproduce commercial television broadcasting  Programming. Special, or unique, receivers are sometimes needed to detect and measure all types of radiated, or transmitted, electromagnetic emissions. These specialized receivers may be called tuned receivers, field intensity meters (FIMs), or spectrum analyzers.

Radiated emissions that receiver systems may be required to measure can be generated from intentional radiators or unintentional radiators. The information contained in intentionally radiated signals may contain analog information, such as audio, or they may contain digital data, such as radio navigation beacon transmissions. Television transmissions, for example, contain both analog and digital information. This information is placed in the transmitted emission, called the "carrier," by a process called "modulation." Again, there are many different types of modulation, the most common being amplitude modulation (AM) and frequency modulation (FM). Receivers detect, or extract, the information/data from radiated emissions by a process called "demodulation", the reverse of modulation.

Many radiated emissions requiring measurements do not contain any useful information or data at all. As an example, radiated emissions from unintentional radiators, such as computer systems, are essentially undesired byproducts of electronic systems and serve no desired or useful purpose. These undesired emissions can, however, cause interference to communications system, and if strong enough, they can cause interference to other unintentional radiating devices. Radiated signals (if strong enough) can also present possible health hazards to humans and animals. Because these emissions must be measured to determine any potential interference problems or health hazard risks, specialized receiver systems must be used.

An important parameter for any receiver is its noise figure, or noise factor. This parameter will basically define the sensitivity that can be achieved with a particular receiver.
An amplifier, usually called a pre-amplifier, is sometimes required when attempting to measure very small signals or emission levels. Because these devices amplify signals, they will also amplify ambient electromagnetic noise. If improperly used, amplifiers can detract from the overall system's sensitivity as well as possibly causing overloading to the receiver's tuner input stage. Overloading a tuner's input stage is simply supplying a larger signal amplitude than the receiver's tuner input circuitry is capable of handling, thus, saturating the tuner's input stage.

THE ANTENNA

Measuring radiated emissions, or electromagnetic energy, begins with the antenna. Antennas are devices that receive (capture) electromagnetic energy traveling through space. Antennas can also be used for transmitting electromagnetic energy. There are many different types of antennas, some are designed to be "broad-banded," to receive or transmit over a large frequency range, and some are designed to receive or transmit at specific frequencies. In any case, all receive antennas are intended to capture "off-air"electromagnetic energy and to deliver these "signals" to a receiver. For this discussion, electric fields (E) will mainly be addressed.

Because antennas can only capture a small portion of the radiated power, or energy, a correction factor must be added to the detected emission levels to accurately determine the radiated power being measured. The actual power received by an antenna is determined by multiplying the
power density of the emission by the receiving area of the antenna, Ae. This antenna correction factor is called the "antenna factor."